
 

 

CS103A Handout 03S 

Winter 2020  

Solutions for Week Three 

Problem One: Concept Checks 

i. There are five propositional connectives besides ⊤  and ⊥ . What are they? 

The five other propositional connectives are ∧ , ∨ , →, ↔, and ¬. If you need a refresher on any of these, check 

out the Truth Table Tool! 

ii. What is the negation of the formula p → q? Repeat this exercise for the four remaining propositional 

connectives. 

The negation of p → q is p ∧  ¬q. For the remaining connectives: 

 · p ∨  q negates to ¬p ∧  ¬q. 

 · p ∧  q negates either to p → ¬q or ¬p ∨  ¬q. 

 · ¬p negates to p. 

 · p ↔ q negates to either ¬p ↔ q or p ↔ ¬q. 

iii. In a propositional logic formula, what does each variable represent? In a first-order logic formula, what 

does each variable represent? 

In propositional logic, each variable (and formula) stands for a proposition, something that's either true or false. 

In a first-order logic formula, each variable stands for an object. 

iv. What is the difference between a predicate and a function? 

Predicates produce propositions as output, and functions produce objects as output. 

v. Can predicates and functions be applied to objects? 

Yes! In fact, they can only be applied to objects! 

vi. Can predicates and functions be applied to propositions? 

No, they cannot be applied to propositions. 

vii. There's a propositional connective that often pairs with the ∀ quantifier. Which is it? 

It's →. You should be very careful if you see ∀ paired with ∧ ! 
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viii. There's a propositional connective that often pairs with the ∃ quantifier. Which is it? 

It's ∧ . You should be very careful if you see ∃ paired with →! 

ix. In first-order logic, is the equality symbol (=) a predicate, a function, both, or neither? 

Equality is a predicate – it takes in two objects and produces a proposition. 

 

Problem Two: Implications are Weird 

The “implies” connective → is one of the stranger connectives. Below are a series of statements regarding im-

plications. For each statement, confirm that it is indeed true, then briefly explain why. 

i. For any propositions P and Q, the following is always true: (P → Q) ∨  (Q → P). 

Here's one way to see this. If Q is true, then P → Q is true because anything implies a true statement. If Q is 

false, then Q → P is true because false implies anything. (If this is confusing, you should review the truth table 

for →!) 

ii. More generally, for any propositions P, Q, and R, the following statement is always true: 

(P → Q) ∨  (Q → R). 

This is basically the same argument as before. If Q is true, then P → Q is true because anything implies a true 

statement. If Q is false, then Q → R is true because false implies anything. 

Why we asked this question: Of all the connectives we've seen, the → connective is probably the trickiest. We 

asked this question to force you to disentangle notions of correlation or causality from the behavior of the → 

connective. 
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Problem Three: Designing Propositional Formulas 

Below is a series of English descriptions of relations among propositional variables. For each description, write 

a propositional formula that precisely encodes that relation. Then, briefly explain the intuition behind your for-

mula. Try to see if you can come up with the simplest formula possible. 

i. For the variables p, q, and r: exactly one of p, q, and r is true. 

One option is (p ∧  ¬q ∧  ¬r) ∨  (¬p ∧  q ∧  ¬r) ∨  (¬p ∧  ¬q ∧  r). This essentially lists all possible combina-

tions of how exactly one variable could be true. 

ii. For the variables a, b, c, and d: If any of the variables are true, then all the variables that follow it al-

phabetically in the English alphabet are also true. 

One option is (a → b) ∧  (b → c) ∧  (c → d). This says that if any variable is true, the one immediately after it 

must be true. Transitively, this guarantees that if any variable is true, everything after it is true as well. 

Why we asked this question: This question was designed to get you thinking about how to use the propositional 

connectives to express larger and more complicated ideas. The propositional connectives are surprisingly ex-

pressive, and we hoped that this question would help you build an intuition behind how they work and how to 

use them. 

 

Problem Four: True or False? 

Below is a list of statements written in first-order logic. For each statement, translate it into English, then decide 

whether it's true or false. 

i. ∀n ∈ ℕ. ∃m ∈ ℕ. n < m 

True. This says “for every natural number, there's a larger natural number.” 

ii. ∃n ∈ ℕ. ∀m ∈ ℕ. n < m 

False. This says “there is a natural number that's smaller than all natural numbers.” No matter what you pick for 

n, if you pick m = n, then you'll have n ≥ m. Remember that quantifiers can talk about the same object at the 

same time! 

iii. ∀n ∈ ℕ. ∀m ∈ ℕ. (n < m → ∃p ∈ ℕ. (n < p ∧ p < m)) 

False. This says “there is a natural number between any two natural numbers.” If you pick n = 0 and m = 1, you 

cannot find a natural number p where 0 < p and p < 1. 

iv. ∀n ∈ ℝ. ∀m ∈ ℝ. (n < m → ∃p ∈ ℝ. (n < p ∧ p < m)) 

True. This says “there is a real number between any two real numbers.” Given two different real numbers n and 

m, the real number (n + m) / 2 is between n and m. 
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v. ∀n ∈ ℕ. ∀m ∈ ℕ. ∃p ∈ ℕ. (n = p · m) 

False. This says “for any two natural numbers, the first is a multiple of the second.” Try picking n = 5 and m = 

3; there's no choice of p that works. 

vi. ∀n ∈ ℝ. ∀m ∈ ℝ. ∃p ∈ ℝ. (n = p · m) 

False. This says “for any two real numbers, there is a real number you can multiply the second number by to get 

the first.” Try picking n = 1 and m = 0. 

Why we asked this question: This question was designed to help you practice translating statements out of first-

order logic. We hoped that you'd get a feel for how to read alternating quantifiers and would then have the fol-

low-up task of reasoning about properties of natural and real numbers. 

 

Problem Five: Interpersonal Dynamics 

The diagram to the right represents a set of people named A, B, C, and D. If there's an ar-

row from a person x to a person y, then person x loves person y. We'll denote this by writ-

ing Loves(x, y). Below is a list of formulas in first-order logic about the above picture. In 

those formulas, the letter P represents the set of all the people. For each formula, deter-

mine whether that formula is true or false. 

i. ∀x ∈ P. ∀y ∈ P. (Loves(x, y) ∨ Loves(y, x)) 

This statement is false. Pick x and y to be A. Then Loves(x, y) is false and Loves(y, x) is false. Remember that 

quantifiers can range over the same objects at the same time! 

ii. ∀x ∈ P. ∀y ∈ P. (x ≠ y → Loves(x, y) ∨ Loves(y, x)) 

This statement is true – given any pair of two people in this diagram, one of them loves the other. 

iii. ∀x ∈ P. ∀y ∈ P. (x ≠ y → (Loves(x, y) ↔ ¬Loves(y, x))) 

This statement is true. Given any pair of two people, exactly one of them loves the other, so either Loves(x, y) 

will be true, or Loves(y, x) will be true, but not both. The biconditional in this case will therefore always evalu-

ate to true. 

iv. ∃x ∈ P. ∀y ∈ P. (Loves(x, y)) 

This statement is false – no one loves everyone, because no one loves themselves. 

v. ∃x ∈ P. ∀y ∈ P. (x ≠ y → Loves(x, y)) 

This statement is true – pick x to be person A. 
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vi. ∀y ∈ P. ∃x ∈ P. (Loves(x, y)) 

This statement is false. No one loves person A. 

vii. ∀y ∈ P. ∃x ∈ P. (x ≠ y ∧ Loves(x, y)) 

This statement is still false – no one loves person A. 

viii. ∃x ∈ P. ∀y ∈ P. (¬Loves(x, y)) 

This statement is true – pick x to be person D. 

Why we asked this question: As we start moving into the realm of binary relations (and later, other discrete 

structures), we're going to start seeing a lot of definitions given purely in first-order logic. You'll need to be able 

to look at a first-order statement and some particular object in question, then think about whether the first-order 

statement is true in that case. These problems were designed to get you thinking about how to read and interpret 

first-order logic formulas in a case that bears a surprising resemblance to what you'll end up doing for binary 

relations. 
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Problem Six: Negating Statements 

i. ∃k. (RugbyPlayer(k) ∧ FootballPlayer(k) ∧ 49er(k)) 

There are many different ways you can negate this. We're going to use the following equivalence: 

¬(p ∧  q ∧  r)  ≡  p ∧  q → ¬r 

Given this, here's one option: 

¬∃k. (RugbyPlayer(k) ∧  FootballPlayer(k) ∧  49er(k)) 

∀k. ¬(RugbyPlayer(k) ∧  FootballPlayer(k) ∧  49er(k)) 

∀k. (RugbyPlayer(k) ∧  FootballPlayer(k) → ¬49er(k)) 

We could alternatively use this equivalence: 

¬(p ∧  q ∧  r)  ≡  ¬p ∨  ¬q ∨  ¬r 

This gives the following: 

¬∃k. (RugbyPlayer(k) ∧  FootballPlayer(k) ∧  49er(k)) 

∀k. ¬(RugbyPlayer(k) ∧  FootballPlayer(k) ∧  49er(k)) 

∀k. (¬RugbyPlayer(k) ∨  ¬FootballPlayer(k) ∨  ¬49er(k)) 

The problem with this new statement is that (at least in my opinion) it's a lot harder to interpret what it means 

than the initial statement we came up with. It's not wrong, though. 

ii. ∀t. (Edible(t) ∧ Nutritious(t) → Cultivated(t)) 

Here's one option: 

¬∀t. (Edible(t) ∧  Nutritious(t) → Cultivated(t)) 

∃t. ¬(Edible(t) ∧  Nutritious(t) → Cultivated(t)) 

∃t. (Edible(t) ∧  Nutritious(t) ∧  ¬Cultivated(t)) 

This says “there's something that's edible and nutritious but not cultivated.” 
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iii. ∀p. (Person(p) → (∃q. (Person(q) ∧ TallerThan(p, q))) ∨ (∃q. (Person(q) ∧ TallerThan(q, p)))) 

Here's one option: 

¬∀p. (Person(p) → (∃q. (Person(q) ∧  TallerThan(p, q))) ∨  (∃q. (Person(q) ∧  TallerThan(q, p)))) 

∃p. ¬(Person(p) → (∃q. (Person(q) ∧  TallerThan(p, q))) ∨  (∃q. (Person(q) ∧  TallerThan(q, p)))) 

∃p. (Person(p) ∧  ¬((∃q. (Person(q) ∧  TallerThan(p, q))) ∨  (∃q. (Person(q) ∧  TallerThan(q, p))))) 

∃p. (Person(p) ∧  ¬(∃q. (Person(q) ∧  TallerThan(p, q))) ∧  ¬(∃q. (Person(q) ∧  TallerThan(q, p)))) 

∃p. (Person(p) ∧  (∀q. ¬(Person(q) ∧  TallerThan(p, q))) ∧  ¬(∃q. (Person(q) ∧  TallerThan(q, p)))) 

∃p. (Person(p) ∧  (∀q. (Person(q) → ¬TallerThan(p, q))) ∧  ¬(∃q. (Person(q) ∧  TallerThan(q, p)))) 

∃p. (Person(p) ∧  (∀q. (Person(q) → ¬TallerThan(p, q))) ∧  (∀q. ¬(Person(q) ∧  TallerThan(q, p)))) 

∃p. (Person(p) ∧  (∀q. (Person(q) → ¬TallerThan(p, q))) ∧  (∀q. (Person(q) → ¬TallerThan(q, p)))) 

This says “there is someone where no one is taller than them and no one is shorter than them.” 

iv. ∃r. (Silly(r) ↔ ¬Serious(r)) 

Here's one option: 

¬∃r. (Silly(r) ↔ ¬Serious(r)) 

∀r. ¬(Silly(r) ↔ ¬Serious(r)) 

∀r. (Silly(r) ↔ ¬¬Serious(r)) 

∀r. (Silly(r) ↔ Serious(r)) 

Why we asked this question: It's really important to be able to negate first-order logic statements. 

You'll use this when reasoning about proofs by contradiction and contrapositive and when trying 

to disprove statements. We asked a similar question like this on the problem set and figured it 

would be a good idea to give you some more practice. 
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Problem Seven: The Epimenides Paradox 

If Epimenides is lying, then we cannot conclude that all Cretans are always truthful. The issue here is that the 

negation of “all Cretans always lie” is “some Cretan sometimes tells the truth.” If Epimenides lies, then we just 

know that some Cretan sometimes tells the truth. It just doesn't have to be Epimenides at this point in time. 

Therefore, Epimenides is lying. 

Why we asked this question: Now that we're getting more practice working with first-order statements and 

first-order negations, we're hoping that you're getting more comfortable reasoning about English statements and 

their negations. This question was designed to see if you could reason about statements in natural language by 

thinking about the underlying logical structure. 

 

Problem Eight: Translating into Logic 

i. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 

write a formula in first-order logic that says “every cat is orange.” 

This nicely matches one of our Aristotelian forms: ∀c. (Cat(c) → Orange(c)). 

ii. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 

write a formula in first-order logic that says “some cat is orange.” 

Another Aristotelian form: ∃c. (Cat(c) ∧  Orange(c)). 

iii. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 

write a formula in first-order logic that says “there are no orange cats.” 

Yet another Aristotelian form! ∀c. (Cat(c) → ¬Orange(c)). 

iv. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 

write a formula in first-order logic that says “some cat is not orange.” 

The last of Aristotelian forms: ∃c. (Cat(c) ∧  ¬Orange(c)). 
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v. Given the predicates Person(x), which states that x is a person; Orange(x), which states that x is orange; 

Cat(x), which states that x is a cat; and Likes(x, y), which states that x likes y, write a formula in first-order logic 

that says “everyone likes at least one orange cat.” 

If we go step by step through a translation and use the Aristotelian forms as a guide, we get this: 

 ∀p. (Person(p) → 

     ∃c. (Cat(c) ∧  Orange(c) ∧  Likes(p, c)) 
 ) 

This says “for any person p, there's an orange cat c that they like.” 

vi. Given the predicates Person(x), which states that x is a person; Cat(x), which states that x is a cat; and 

Likes(x, y), which states that x likes y, write a formula in first-order logic that says “everyone likes exactly one 

cat.” 

Using a combination of the Aristotelian forms and what we saw about uniqueness in lecture, we can come up 

with something like this: 

 ∀p. (Person(p) → 

     ∃c. (Cat(c) ∧  Likes(p, c) ∧  

         ∀d. (Cat(d) ∧  d ≠ c → ¬Likes(p, d)) 

     ) 

 ) 

This says “for any person p, there's a cat c that they like, and that person p doesn't like any other cats.” 

vii. Given the predicate Person(x), which states that x is a person, and Muggle(x), which states that x is a 

muggle, write a statement in first-order logic that says “some (but not all) people are muggles.” 

One possibility is given here, which says both that someone is a muggle and that someone is not a muggle. 

∃p. (Person(p) ∧  Muggle(p))   ∧    ∃p. (Person(p) ∧  ¬Muggle(p)) 

Another equivalent option is to say that someone is a muggle and that it's not the case that everyone is a mug-

gle. Here's one way to do that: 

∃p. (Person(p) ∧  Muggle(p))   ∧    ¬∀p. (Person(p) → Muggle(p)) 
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viii. Given the predicate Person(x), which states that x is a person, and Ruler(x), which states that x is a rul-

er, write a statement in first-order logic that says “at most one person is a ruler.” 

One way to express this idea is to say that either no one is a ruler, or there is just one person who's a ruler and 

everyone else isn't a ruler. This is shown here: 

 ¬∃p. (Person(p) ∧  Ruler(p)) ∨  

 ∃p. (Person(p) ∧  Ruler(p) ∧  

     ∀q. (Person(q) ∧  p ≠ q → ¬Ruler(q)) 

 ) 

Another option which works, but is a lot more subtle, is to say that there's some person where everyone who is a 

ruler is that one person. That way, if the person isn't a ruler, then no one is a ruler, and if that person is a ruler, 

then no one else is. This is shown here: 

 ∃p. (Person(p) ∧  

     ∀q. (Person(q) ∧  Ruler(q) → p = q) 

 ) ∨  ∀p. ⊥  

This second one is a lot trickier to come up with and it's pretty subtle to see why it's correct, so don't worry if 

you didn’t think of it. We thought we’d include it just for the sake of completeness. [Note: this version is subtle, 

and was originally incorrect in these solutions! Existential statements are always false in empty worlds, so we 

added the part in red to ensure the proposition would be true for empty worlds as well]. 

ix. Given the predicate Instant(i), which states that i is an instant in time, and Precedes(x, y), which states 

that x precedes y, write a sentence in first-order logic that says “time has a beginning, but has no end.” 

If there's a beginning of time, there's a point in time before all other time instants. Since there's no end to time, 

for every time point, there's another time point that comes after it. That gives us the following: 

 ∃b. (Instant(b) ∧  

     ∀x. (Instant(x) ∧  b ≠ x → Precedes(b, x)) 

 ) ∧  

 ∀b. (Instant(b) → 

     ∃x. (Instant(x) ∧  Precedes(b, x)) 

 ) 

Why we asked this question: First-order logic is a rather expressive language for reasoning about mathematical 

statements, but the structure of first-order statements often looks quite different from their English equivalents. 

We wanted to provide you more practice with first-order translations so that you'd feel more comfortable work-

ing with first-order logic in the future. 


